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Multivariate Methods in Ophthalmology with Application to 
Other Paired-Data Situations 

Bernard Rosner 
Channing Laboratory, Department of Preventive Medicine and Clinical Epidemiology, 
Harvard Medical School and Brigham and Women's Hospital, 180 Longwood Avenue, 

Boston, Massachusetts 02115, U.S.A. 

SUMMARY 

Methods are presented for performing multiple regression analyses and multiple logistic regression 
analyses on ophthalmologic data with normally and binomially distributed outcome variables, while 
accounting for the intraclass correlation between eyes. These methods are extended to more general 
nested data structures where a variable number of subunits are available for each primary unit of 
analysis, as in familial data, These methods can also be applied to other types of paired data, as in 
matched studies with a variable matching ratio, where one has a continuous outcome variable and 
wishes to control for other confounding variables while maintaining the matching. Examples are 
given of these methods with a group of over 400 patients with retinitis pigmentosa, in which spherical 
refractive error and visual acuity are related to genetic type after the effects of age, sex and the 
presence of cataract, have been controlled. 

1. Introduction 

Methods have been previously described for the analysis of ophthalmologic data, where 
one has either a single normally distributed or binomially distributed outcome variable and 
the eye is the basic unit of analysis (Rosner, 1982). It is often the case that one wishes to 
control for the effects of other covariates while performing such analyses. In ophthalmology, 
these covariates may be either person-specific or eye-specific in nature. Multiple regression 
analysis and multiple logistic regression analysis (Cox, 1970) are multivariate methods for 
normally and binomially distributed outcome variables, respectively, which are commonly 
employed to achieve these objectives. However, these analytical methods generally require 
statistical independence for individual sample points. In ophthalmologic work, this condi- 
tion is frequently not satisfied, since one often uses the eye as the fundamental unit of 
analysis, and outcome data on individual eyes of the same person are generally highly 
correlated (Rosner, 1982; Ederer, 1973). 

In this paper, we present appropriate extensions of these methods for ophthalmologic 
data, which allow for either person-specific or eye-specific covariates in the same model, 
and account for the intraclass correlation between eyes of the same person. These methods 
have also been extended to the situations (i) where k (>2) units of analysis are provided by 
each person, as in dental data, and (ii) where data are available for a variable number of 
subunits for each major unit of analysis, as in the analysis of familial data. Finally, these 
results have implications for more general paired-data situations, as in the analysis of case- 
control studies with normally distributed outcome variables, where a variable number of 
cases and/or controls are available for each pairing, and one wishes to control for other 
covariates while maintaining the matching. 

Key words: Ophthalmology; Multiple regression; Multiple logistic regression; Polychotomous logistic 
regression; Nested design; Intraclass correlation; Matched pair data; Case-control studies; 
Familial data; Retinitis pigmentosa; Twin data. 
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2. Normally Distributed Outcome Variable 

2.1 Multiple Regression Model 

We assume a nested data structure with n primary units of analysis, where within the ith 
primary unit of analysis there are ti secondary units of analysis (or subunits), i = 1, -**, n. 
For example, for ophthalmologic data, the primary unit of analysis is the person, the 
secondary units are the eyes, and if there are no missing data, then ti = 2, i = 1, . . ., n. 
We wish to relate the value of a normally distributed outcome variable yij for the jth 
subunit of the ith primary unit (i = 1, . . ., n; j = 1, ..., ti) to the values of K independent 
variables x1j1, .I. , XiK, where xijk denotes the kth independent variable for the jth subunit 
of the ith primary unit (i = 1, ..., n; j = 1, ..., ti; k = 1, ..., K). We consider the 
following multiple regression model: 

K 

Yil= 00 + E i p;Xiik + ei, i= 1, . n, j= 1, I'll. ti, (2.1) 
k.=1 

where 
var(ei) = a2 p(ej1, ejj2) = p, i= 1 ... n, Il t i2 = 1 t . . . , . 

If p is known, then it follows (Rao, 1967, p. 188) that the maximum likelihood estimator 
(MLE) of , is given by 

,(p) = (X'V'X)'X'V'Y, (2.2) 

where T = = ti, X is a T x (K + 1) matrix = (X(1)'X(2)', ... , X(n')', X(i) is a ti x (K + 1) 
matrix consisting of predictor variables for the ith primary unit, whereby X5'1) = 1, 
Xjk? = Xij,k-, j= 1,..., ti, k= 2,..., K + 1; V-' W is a T x T matrix given by 

O w(2) ... o w 0o 0 W= j 
where WJ'V = I1 + (ti- 2)pI/zi, WJ') = -P/zi, zi= (1 - p) l + (ti - l)p}, i = 1, ... n, 
it k = 1, ..., i; Y is a Tx 1 matrix = (V'l)Yy2)', ... , y(n)', where y(i) is a ti x 1 matrix 
consisting of outcome variables for the ith primary unit, whereby Pi)=yi=, i=1, ..., n, 
j = 1, ..., ti; and ,B(p) is a (K + 1) x 1 matrix = [fO(p), M.P, T 

2.2 Estimation of,f and p 

Since p is not known, one must use iterative methods to obtain the MLE for ,. In particular, 
if , is known and ti = t, then it follows from Donner and Koval (1980) that the MLE of p 
is given by 

n I I ft ] 
{(t -* P(A) E E E Y,> Yi*1 / t- ),, * (2.3) 

i=l j=l 1=1 i=1 j=1 
j+/ 

where Y*J = #- (do + Xh= fkXijk), i = 1, *.., n, j= 1, . .. , t. Thus, one can successively 
alternate between (2.2) and (2.3) to obtain ,B and p. 

If ti is not the same for all i, then an explicit solution for the MLE of p as a function of 
,, as presented for the balanced case in (2.3), does not exist, and Newton-Raphson methods 
must be used to obtain , and p. 
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2.3 Hypothesis Testing 

If one substitutes the MLE for , and p into the model in (2.1), then it follows immediately 
that the log likelihood, ln L, is given by 

X -2 ln L = constant + Tln{(Y - X,)'V-'(Y - X,A)/TT + (T- n)ln( -p 

n 

+ E ln{l + (ti - 1)p. (2.4) 
i=1 

One can now use asymptotic methods to perform hypothesis tests concerning ,B. In 
particular, if one wishes to test the hypothsis Ho: 1k = 0, all other fi t 0 versus HI: all 
f3g 0, then from (2.4) one can obtain X under either Ho or HI; we denote these values by 
X K, and XK, respectively. We now compute Uk = 4k - XK X2 under Ho, and reject if 
Uk> X2.1-,>, the 100(1 - a)th percentile of a x2 distribution. 

2.4 Implications for General Paired-Data Situations 

The model in (2.1) was designed primarily for nested data structures such as those naturally 
occurring in ophthalmology, otolaryngology, twin data, etc. However, such a model can 
also be applied to general paired-data situations where the outcome variable can be assumed 
to be normally distributed. In this case, the pairing can be considered as the primary unit 
of analysis and the individuals within the pairing the secondary units of analysis. Let yjj 
denote outcome for the jth person in the ith pairing, i = 1, ..., n j = 1, ..., ti. In 
particular, if some members of the pairing can be considered as cases and others as controls, 
then case/control status can be included in the set of predictor variables, where Xijk = 1(0) 
for a case (control) member of the ith pairing, respectively. Then k measures the difference 
in outcome between cases and controls after adjustment for other potential confounding 
variables. For example, this would be an appropriate model for examining the relationship 
between serum cholesterol level and retinitis pigmentosa (RP) after adjustment for potential 
confounding variables such as age, sex and weight, in a study where the primary sampling 
unit is the family, and one ascertains a variable number of cases and unaffected siblings 
(controls) within a given family. 

This problem has been considered previously (Rosner and Hennekens, 1978) for paired- 
data situations with a continuous outcome variable, in the special case of a 1-1 matching 
ratio. By the use of multiple regression, differences in outcome are modelled as a linear 
function of differences in potential confounding variables between case and control mem- 
bers of a pair. The regression intercept provides an estimate of the difference in outcome 
between the case and control members of a pair, after adjustment for potential confounding 
variables. The model in (2.1) is more general in that (i) outcome is considered explicitly 
for individual members of a pairing, rather than as a difference score between case and 
control members of a pair, and (ii) variable numbers of cases and controls are allowed per 
pairing. 

3. Binomially Distributed Outcome Variables 

3.1 Polychotomous Logistic Regression Modelfor Ophthalmologic Data (ti = 2) 

We restrict our attention in this section to the case where each primary unit of analysis has 
exactly two subunits, as in the situation encountered for ophthalmologic data with no 
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missing values. Henceforth, for ease of presentation, we will refer to the primary units of 
analysis as persons, the subunits as eyes, and will arbitrarily label the first (second) eye as 
the right (left) eye, respectively. 

Let the outcome for each eye be binary, where + (-) represents the diseased (nondiseased) 
condition, respectively. There are then four possible disease states for each person, ++, 
+-, -+, and --, where the first (second) symbol refers to the condition of the right (left) 
eye, respectively. Let the (NP + 2NE) x 1 matrix of independent variables for the ith person 
be 

xi = (x(0) ', x(l)' xi2)X2) (3.1) 

where x(?) is an NP x 1 matrix of person-specific variables, and X(l) (x(2)) are NEx 1 matrices 
of right (left) eye-specific variables, respectively. We also assume that the components of 
the right and left eye-specific matrices correspond to the same type of variables; for example 
x(l) and x?2) might correspond to visual acuity for the right and left eyes, x?) and x?2) to 
intraocular pressure, and so on. 

Let us now consider an individual with x = xo = (Of , ONE, ONE), where O is a c x 1 
vector of zeros. We use the beta-binomial distribution to model the probability of the four 
disease states (++, +-, -+, --) for such an individual. Specifically, we assume that this 
individual has probability p of having any particular eye affected, where p follows a beta 
distribution with parameters a and b over the class of all individuals with covariates xo. It 
follows immediately that the probability distribution of disease states for such an individual 
is given by 

P(++Ixo) =(a+ I)a/{(a+b+ 1)(a+ b)}, 

P(+- Ixo) = P(-+ I xo) = ab/{(a + b + 1)(a + b)}, 

P(-- Ixo) = (b + I)b/{(a + b + 1)(a + b)}. 
We now wish to specify the probability distribution of disease states for an 

individual with arbitrary covariates x = (x)', Ix( x(2)')'. Let a, = ln{a/(b + 1)}, 
a2 ln[(a + I)a/{(b + 1)b}], ZR (ZL) be indicator variables set to 1 if the right (left) eye is 
affected, and 0 otherwise, and PR (PL) be the conditional probability that the right (left) eye 
is affected given the outcome status of the left (right) eye. We use a logistic model to relate 
PR (PL) to x, ZL (ZR): 

ln IpR/(I - PR)} = a1 + (a2 - 2a)zL + x + zyX X (3.2) 

ln{ PL/( - PL)} = a 1 + (a2 - 2a1)ZR + Ox (0) + yX(2). 

It follows directly from (3.2) that 

P(++ I x)/P(-+ I x) = exp(a2 - a 1 + Ox(?) + 'yx0)), 

P(+- I x)/P(-- I x) = exp(al + Ox(?) + 'yx0)), 

P(-+ I x)/P(-- I x) = exp(al + Ox + yx(2)), 

P(++ I x)/P(-- I x) = {P(++ I x)/P(-+ I x)}P(-+ I x)/P(-- Ix) 

= exp(a2 + 2,x (0) + yX(I) + yx(2) ). 

In summary, one has the following polychotomous logistic regression model 
4 

P(j I xi) = exp(Ojx*) / eXP(OkX*), (3.3) 
k= 1 
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where x* - (1, x(?)', x(2)')', 0 is a 4 X (NP + 2NE + 1) matrix such that 

Fe1] Fa2 2 y '] 
0 = 02 a02 a, ( ONE 

1031 j, NE ~~y 
L041 Op ONE ONE_ 

, is a row vector of length NP of person-specific regression coefficients, y is a row vector of 
length NE of eye-specific regression coefflcients which are assumed to be the same for the 
right and left eye, O, is a c x 1 vector of zeros, and j = 1, ..., 4 correspond to the disease 
states ++, +-, -+, and --. 

We note from (3.2) that fp has an odds-ratio interpretation similar to that given by 
ordinary logistic regression. In particular, from (3.2), if x(?) is a binary exposure variable 
such that x(?) = 1 (0) for exposed (unexposed), then exp(fp) is the ratio of odds in favor of 
disease for a particular eye for the exposed versus the unexposed, all other variables held 
constant, including the disease status of the fellow eye. Furthermore, yq has a similar 
interpretation, with either x(l) or x (2) replacing x(4). Finally, we define the 'pairwise odds 
ratio' (OR) as 

OR = IP(++ I x)/P(-+ I x)I/IP(+- I x)/P(-- I x)}. 

It can be easily seen from (3.2) that OR = exp(a2 - 2ai) = {(a + 1)(b + I)}/(ab). Thus, OR 
provides a measure of the dependence between eyes for binary outcome variables. We 
estimate the parameters in (3.3) by the method of maximum likelihood where the likelihood 
L = fl7= P(j I xi). No closed-form expressions exist for the parameter estimates, and thus 
an iterative procedure based on the Newton-Raphson method may be employed. 

We note from (3.2) that OR is assumed to be the same for all primary sampling units, 
and in particular, is independent of x(. This assumption can be relaxed by adding 
interaction terms of the form ,6*X(O)ZL (/6*X(O)ZR) to the right-hand side of the first and 
second equations in (3.2), respectively. It then follows that 01 = (a2, 2,f + , fy, 'y), while 
0i (i = 2, 3, 4) remain unchanged in (3.3). One can then test Ho: ,* =O versus 
HI: ,* t Ok,I after controlling for other variables in the model, by estimating the param- 
eters of the augmented model by the method of maximum likelihood and comparing 
likelihoods under Ho and HI using asymptotic methods. 

3.2 Extension to Unbalanced Designs 

We now consider the general case, where the ith primary unit of analysis has ti subunits, 
i = 1, . . ., n. Let yij = 1 if the jth subunit of the ith primary unit is affected, and 0 other- 
wise. Let the (NP + tiNE) X 1 matrix of independent variables for the ith primary unit be 

xi= (x(', x . . ., x"i')'), where x(o) is an NP x 1 matrix of person-specific variables and 
x x.i. ., are NE x 1 matrices of subunit-specific variables. Suppose that each subunit 
in the ith primary unit has probability p of being affected, where p is assumed to follow a 
beta distribution. 

We again first consider an individual with x = xo (OP, OE, .., Op)'. Define 
aO = bo = 1, ak = [J-o (a + j), bk = [J- (b + j), k y 1, Yi. = y yij. It follows immediately 
from the beta-binomial distribution that P( yi. = k I xo)/P( yi. = 0 I xo) = akb,,-k/b,1. We now 
wish to specify the probability distribution of disease states for an individual with arbitrary 
covariates xi. Suppose there are si affected subunits in the ith primary unit (si > 0) and let 
J = ij', . .. , j,.j denote the ordered set of affected subunits. Let y) ..., y(Si) be column 
vectors of length ti such that y(o) = Yi, y(7) = y572`) for all j j, y(m) =o , m= 1, ..., si. 
Thus, y(il) is formed by changing the status of the lowest-order affected subunit in Y(i?) to 
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unaffected, and similarly for y(2) y(Si) where y(Si) = 
O,i. 

We now express 
P(yj I xi)/P(0, I xi) as fli2o P(y(m) I xi)/P(y(m+l) I xi) and assume a logistic model similar to 
that given in (3.2) for the conditional distribution of the jm+l th subunit given the response 
status of the other ti - 1 subunits, whereby 

P(y(m) I xi)/P(Yim+l) I xi) = exp(a(m) + x + o yXJm+)), m = 0, ... s - 1, 

and 

a(m) = ln{(a + si - m - 1)/(b + ti - si + m)} 
from the beta-binomial distribution. Upon collecting terms we then have 

= x/) (b,- )\exp{[ yj(xZ + yxi, ) (3.4) 
P(O,1 I xi) b\ b,,/I 

or the equivalent polychotomous logistic regression model 

as,b,i_siexpfx yYj( x + yx(i))} 

P(yi I xi) = X (3.5) 

E a b,iexp{ z1j(Bx(?) + 'Yx(') 
Zi J=1 

where the summation in the denominator is over all possible permutations 
Zi = (zi1, ..., zi,) of Os and Is. The likelihood of the entire sample is then given by 
L = fJI=I P(y1 I xi) and standard numerical methods can be used to obtain maximum 
likelihood estimates for a, b, , and y, although the computations become cumbersome for 
large ti. However, if only person-specific covariates are considered in the model, then the 
computations can be reduced considerably since, in this case, the summation in the 
denominator of (3.5) is with respect to Ezlj rather than zi. Finally, we can use asymptotic 
methods similar to those considered in ?2.3 to perform hypothesis tests concerning , and 
y for the models considered in (3.3) and (3.5). 

4. Examples 

We now present examples of the use of these methods on a data set obtained from an 
outpatient population of 456 persons with retinitis pigmentosa (RP), aged 6 to 80, who 
were seen at the Massachusetts Eye and Ear Infirmary from 1970 to 1979. The patients 
were classified on the basis of a detailed family history into the genetic types of autosomal 
dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL), and isolate 
RP (ISO) for a study of differences between these four groups on certain measurements 
made during a routine ocular examination. In order to simplify the analysis, only one 
person was selected from each family, and if more than one affected person was available 
for analysis, then a randomly selected affected person was chosen. Thus, the 456 persons 
were from 456 unique families. The details of the design of the study and the procedures 
for genetic classification are given by Berson, Rosner and Simonoff (1980). 

We first present an analysis of the differences in spherical refractive error between genetic 
types using the multiple regression model in (2.1). For this analysis, genetic type was 
represented in the form of three indicator variables for the groups DOM, AR and SL, 
respectively. Two other person-specific variables (age and sex), and two eye-specific variables 
(the presence of a posterior subcapsular cataract on slit-lamp examination separately for 
each eye, and an indicator variable distinguishing between the right and left eye), were also 
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considered in the analysis as potential confounding variables. The sample used for this 
analysis consisted of the subgroup of 427 persons who had complete information on 
spherical refractive error and all the above predictor variables. Data were collected on 
spherical refractive errors based on retinoscopy following dilation and cycloplegia with 10% 
phenylephrine HCL and 1% cyclopentolate HCL. The results of the multiple regression 
analysis are presented in Table 1. 

We see that there are significant differences between the refractive error of eyes of persons 
from the four genetic types (P < .001) after controlling for the effects of age, sex and the 
presence of cataracts. In addition, males (P = .050) and eyes with posterior subcapsular 

Table 1 
Results of multiple regression model comparing spherical refractive error (diopters) in different 

genetic types after controlling for age, sex, the presence of a posterior subcapsular cataract, and the 
right versus left eye 

(a) Estimates of regression parameters and tests of significance of overall effects 

Variable Regression Standard Chi df P-value Intraclass Residual coefficient error square* correlation variance 
0.943 9.966 

Constant 0.447 0.433 

Genetic type 24.44 3 <.001 
DOMt 0.875 0.531 
ARt 0.319 0.442 
SLt -2.898 0.646 

Age -0.011 0.010 1.23 1 NS 

Sext -0.623 0.317 3.84 1 .050 

Presence of posterior -0.410 0.182 5.40 1 .020 
subcapsular 
cataract? 

Right eye** -0.012 0.049 0.05 1 NS 
(b) Comparison of specific genetic types: mean difference tt ? SE (with P-value) 

Group, i1 
Comparison group, i2 

DOM AR SL ISO 

DOM 0.556 ? 0.642 3.773 ? 0.799 0.875 ? 0.531 
(NS) (P < .001) (NS) 

AR 3.217 ? 0.750 0.319 ? 0.442 
(P < .001) (NS) 

SL -2.898 ? 0.646 
(P< .001) 

* Chi square statistics are given by -2 log L2 + 2 log Li, where LI (L2) are the likelihoods under, respectively, 
(i) the full model and (ii) the reduced model obtained by deleting the variable(s) corresponding to the effect of 
interest from the full model. 

t Coded as 1 if person has this genetic type and 0 otherwise. 
t Coded as 1 if male and 0 if female. 
? Coded for each eye as 1 if yes and 0 if no. 
** Coded as 1 if right eye and 0 if left eye. 
tt Mean difference = ,B. - 0jB2; SE(o3, - 1312) computed from the asymptotic variance-covariance matrix of 

the regression parameters obtained from the Fisher information matrix; P-value obtained by comparing 
(Ai - t2)/SE(QI - Q2) to an N(0, 1) distribution. 
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cataracts (P= .020) were significantly more likely to have myopic refractive errors, while 
no significant effect of age on refractive error was apparent in this series. Finally, spherical 
refractive error was not significantly different between the right and left eye. We now look 
in more detail for differences in refractive error between the specific genetic types, using 
the information matrix to obtain asymptotic standard errors of linear contrasts of the 
regression coefficients. We find that there are significant differences between the sex-linked 
group and each of the other groups (P < .001), while there are no significant differences 
between the DOM, AR and ISO groups. We note that the estimated correlation between 
spherical refractive error of the two eyes of an individual is .943. 

Table 2 
Results of polychotomous logistic regression model comparing visual acuity* in different genetic 
types after controlling for age, sex, the presence of a posterior subcapsular cataract, and the right 

versus left eye 
(a) Estimates of regression parameters and tests of significance of overall effects 

Variable Regression Standard Chi squaret df P-value Odds ratio coefficient error between eyes 
26.4 

a, -2.164 0.230 

a2 -1.056 0.389 

Genetic type 12.38 3 .006 
DOMf -0.334 0.186 
ARf 0.207 0.157 
SLf 0.601 0.252 

Age 0.0098 0.0037 7.26 1 .007 

Sex? 0.041 0.111 0.14 1 NS 

Presence of posterior 0.277 0.118 5.57 1 .018 
y subcapsular cataract** 

Right eyett 0.055 0.239 0.05 1 NS 
(b) Comparison of specific genetic types: odds ratioff (with P-value) 

Comparison group, i2 
Group, il 

DOM AR SL ISO 
DOM - 0.58 0.39 0.72 

(P= .017) (P = .002) (NS) 

AR 0.67 1.23 
(NS) (NS) 

SL 1.82 
(P = .017) 

* An eye is defined as affected if visual acuity is 20/50 or worse and normal if 20/40 or better. 
t Chi square statistics ar given by -2 log L2 + 2 log Li, where LI (L2) are the likelihoods under, respectively, 

(i) the full model and (ii) the reduced model obtained by deleting the variable(s) corresponding to the effect of 
interest from the full model. 

t Coded as 1 if person has this genetic type and 0 otherwise. 
? Coded as 1 if male and 0 if female. 
** Coded for each eye as 1 if yes and 0 if no. 
tt Coded as 1 if right eye and 0 if left eye. 
14 Ratio of odds in favor of an eye being affected for a person in Group ii as compared with a person in 

Group i2, all other factors being the same (including the acuity status of the opposite eye). 
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We next present an analysis of the differences in best-corrected Snellen visual acuity 
(VA) between genetic types, using the polychotomous logistic regression model in (3.3) 
with the same set of predictor variables as in Table 1. For this purpose, an eye was 
considered affected if VA was 20/50 or worse and normal if VA was 20/40 or better. A 
total of 444 persons with complete data on visual acuity and all predictor variables were 
used in the analysis; the results are presented in Table 2. 

We see that there are significant differences between the VA of eyes of persons from the 
four genetic types (P = .006) after controlling for the effects of age, sex and the presence of 
cataracts. In addition, age (P = .007) and the presence of a posterior subcapsular cataract 
(P = .018) both significantly increased the probability of an eye having VA of 20/50 or 
worse, while sex had no significant effect on acuity. Finally, VA was not significantly 
different for the right and left eye. In order to assess more specific differences in VA, for 
each pair of genetic types, we computed the ratio of odds in favor of reduced acuity in a 
particular eye, for one genetic type versus the other, after controlling for other risk factors 
and the acuity status of the fellow eye. It follows immediately from (3.2) that, for a 
comparison of the pth genetic type with ISO (p < 3), the odds ratio is given by exp(Op), 
while for a comparison of the pith and P2th genetic type, 1 < PI, P2 < 3, it is given by 
exp(#p, - 1P2) where the standard error of the latter odds ratio is obtained from the 
information matrix. In each case, asymptotic normality of ln(odds ratio)/SE{ln(odds ratio)} 
is used to provide a basis for significance testing. We see that eyes of sex-linked persons 
were significantly more likely to have reduced acuity than eyes of DOM and ISO persons 
(DOM versus SL, odds ratio = .39, P = .002; SL versus ISO, odds ratio = 1.82, P = .0 17). 
The only other significant difference was found between eyes from DOM and AR persons 
(DOM versus AR, odds ratio = .58, P = .017). As was the case for spherical refractive error, 
a strong association was found between the presence of reduced acuity in two eyes of the 
same person. The estimates of the parameters of the beta distribution were a = .162, 
b = .373, with pairwise odds ratio, OR = (a + 1)(b + 1)/(ab) = 26.4 after adjusting for the 
other variables considered in Table 2. 

5. Discussion 

We have presented multivariate models for normally and binomially distributed outcome 
variables for ophthalmologic data which allow one to look simultaneously at the effects of 
person- and eye-specific predictor variables while accounting for the intraclass correlation 
between eyes. These methods are also directly applicable to other special areas, such as for 
twin data or otolaryngological data. Furthermore, these methods have also been extended 
to the situation where a variable number of subunits are available for each primary unit of 
analysis, as in familial data. In the binomial case, these methods are extensions of the beta- 
binomial model used in the analysis of binary response data from toxicological experiments 
(Williams, 1975; Haseman and Kupper, 1979) in that other covariates of both a person- 
specific and eye-specific nature are controlled for explicitly in the analysis. 

Other possible methods of multivariate analysis for the designs discussed in this paper 
include (a) treating each eye as an independent random variable and performing analyses 
over all eyes, (b) performing separate analyses for the left and right eye, and comparing 
results (Ederer, 1973), and (c) representing all variables on a person-specific basis, and 
performing standard analyses. The disadvantage of the first two methods have been 
discussed previously (Rosner, 1982). In particular, Method (a) is generally invalid, resulting 
in greatly exaggerated levels of significance. This point is emphasized in the examples 
considered in the present paper, where (i) the intraclass correlation between eyes for 
spherical refractive error was estimated as .943, and (ii) the pairwise odds ratio between 
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eyes for reduced visual acuity (VA 20/50 or worse) was estimated as 26.4. Method (b) is 
valid, but may be inefficient, particularly for outcome variables which have lower correla- 
tions between eyes than the variables considered in this paper. In particular, it is possible 
that analyses of separate eyes would both yield nonsignificant results (or one eye-specific 
analysis would yield significant results while the other would not), while an analysis 
appropriately combining evidence over individual eyes would result in overall significant 
results. Method (c) is also likely to be inefficient, particularly for eye-specific predictor 
variables, where it is desirable to relate findings for outcome and predictor variables on the 
same eye. 

The findings in this paper, while intended mainly for nested data structures as in 
ophthalmologic data, also have implications for more general paired-data situations. In 
particular, for matched-pair studies with variable numbers of cases and controls per pairing, 
the model in (2.1) can be used to compare cases and controls on continuous outcome 
variables in the presence of other confounding variables, while maintaining the matching. 
This is a generalization of previous work (Rosner and Hennekens, 1978) which only 
permitted such analyses for matched studies with a 1-1 matching ratio. 

Computer programs to implement the methods in this paper have been written in 
FORTRAN IV and are available upon request from the author. 
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RESUME 

Cet article presente des methodes de regression multiple et de regression multiple logistique dans le 
contexte de variables ophthalmologiques aussi bien normales que binomiales avec prise en compte 
du coefficient de correlation intra-classes entre les deux yeux. Ces methodes sont etendues au cas plus 
general de schemas emboites oii il existe un nombre variable de sous unites pour chaque unite 
primaire (exemple des donnees familiales). Elles peuvent etre appliquees a d'autres types de donnees 
appariees telles que celles oii la reponse est continue et on veut contr6ler d'autres facteurs de confusion 
tout en maintenant l'appariement. Des exemples de ces methodes sont donnes dans un groupe de 
plus de 400 malades avec pigmentation retinienne pour lesquels l'erreur de refraction spherique et 
l'acuite visuelle sont relies a des marqueurs genetiques apres contr6le de l'age, du sexe, et de la 
presence de cataracte. 
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